首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2476篇
  免费   720篇
  国内免费   513篇
化学   1209篇
晶体学   302篇
力学   89篇
综合类   33篇
数学   18篇
物理学   2058篇
  2024年   1篇
  2023年   27篇
  2022年   49篇
  2021年   63篇
  2020年   97篇
  2019年   66篇
  2018年   82篇
  2017年   112篇
  2016年   124篇
  2015年   131篇
  2014年   203篇
  2013年   237篇
  2012年   288篇
  2011年   380篇
  2010年   286篇
  2009年   278篇
  2008年   250篇
  2007年   243篇
  2006年   226篇
  2005年   121篇
  2004年   124篇
  2003年   74篇
  2002年   45篇
  2001年   35篇
  2000年   22篇
  1999年   21篇
  1998年   20篇
  1997年   15篇
  1996年   12篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   12篇
  1991年   3篇
  1990年   3篇
  1989年   10篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有3709条查询结果,搜索用时 16 毫秒
101.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   
102.
《Current Applied Physics》2019,19(9):984-986
A highly symmetric ZnO micro-fence is prepared to form an optical resonator, which a symmetric array consisting of six elongated hexagonal microcolumns. It is found that the luminescence emission could be enhanced at the edge of ZnO micro-fence and the wavelength dependent light intensity could be influenced by its geometry. The optical characterization along with theoretical calculations and computer simulation analysis suggest that the Fabry-Perot and Cross-whispering gallery modes are generated in ZnO micro-fence. The individual ZnO micro-fence can regarded as an optical resonator structure. Furthermore, it is proposed that the source concentration around the substrate during the growth is a crucial factor for forming such a micro-fence.  相似文献   
103.
Abstract

Reliable and comprehensive sampling methods are required to obtain accurate data for VOC concentrations in air samples. The major drawback of the adsorption tube sampling method, widely employed in environmental studies, is the fact that C2 compounds are usually not trapped quantitatively.

The focus of this work was thus to improve sampling based on adsorption tubes packed with Molsieve and Carbosieve. To improve the sampling efficiency for the C2 compounds, a cooling device, based on Peltier cooling was constructed, which could be operated at a temperature down to ?30°C.

Experiments under laboratory and field conditions were carried out to study the influence of the sampling temperatuie on the recovery of ethane and ethene as the most volatile VOCs. The results clearly demonstrate the need for a cooled sampling device for the analysis of C2 compounds in air. Under the investigated conditions, the recoveries with ambient temperature sampling were only in the range of 38–46% for ethane and 33–59% for ethene respectively, in comparison to the cooled sampling device. These findings are only valid for the described conditions and can change significantly with temperature and concentration. A generalisation of the recovery is thus very difficult to give.

The use of the sampling device for a field study is reported, where samples were collected simultaneously at three different altitudes in a diurnal profile on the slope of the Schulterberg mountain in Tyrol (Austria).  相似文献   
104.
Zn0.99Cu0.01O films were studied experimentally and theoretically.The films were prepared by pulsed-laser deposi tion on Pt(111)/Ti/SiO2/Si substrates under various oxygen pressures to investigate the growth-dependence of the ferromag netic properties.The structural,magnetic,and optical properties were studied,and it was found that all the samples possess a typical wurtzite structure,and that the films exhibit room-temperature ferromagnetism.The sample deposited at 600℃and an oxygen pressure of 10 Pa showed a large saturation magnetization of 0.83μB/Cu.The enhanced ferromagnetism in the(Cu,Li)-codoped ZnO is attributable to the existence of Zn vacancies(VZn),as shown by first-principles calcu lations.The photoluminescence analysis demonstrated the existence of V Zn in both Zn0.99Cu0.01O and(Cu,Li)-codoped ZnO thin films,and this plays an important role in the increase of ferromagnetism,according to the results of first-principles calculations.  相似文献   
105.
利用低温水热法在p-GaN薄膜上生长了铟(In)和镓(Ga)共掺杂的ZnO纳米棒。X射线衍射(XRD)、X射线光电子能谱(XPS)和X射线能量色谱仪(EDS)结果表明,In和Ga已固溶到ZnO晶格中。扫描电子显微镜(SEM)结果表明, ZnO纳米棒具有良好的c轴取向性,随着In和Ga共掺杂浓度的增加,纳米棒的直径减小,密度增加。XRD结果表明,In和Ga共掺杂引起ZnO晶格常数增大,导致(002)衍射峰向低角度方向偏移。同时,ZnO的光学性质受到In和Ga共掺杂的影响。与纯ZnO相比, 共掺杂ZnO纳米棒的紫外发射峰都出现轻微红移,这是表面共振和带隙重整效应综合作用的结果。I-V特性曲线表明,随着In和Ga共掺杂浓度的增加,n-ZnO纳米棒/p-GaN异质结具有更好的导电性。  相似文献   
106.
To increase the profitability and sustainability of agricultural waste, a facile green approach was established to synthesize zinc oxide nanoparticles (ZnO NPs) using saffron leaf extract as a reducing and stabilizing agent. Structural characteristics of NPs were investigated by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), field emission scanning electron microscopy (FESEM), and UV–Visible (UV–Vis) spectroscopy. Characterization results revealed that ZnO NPs is highly crystalline with a hexagonal wurtzite structure and spherical particles with diameter less than 50 nm, as confirmed by XRD and FESEM techniques. UV–Vis absorption spectra depicted an absorption peak at 370 nm, which confirms the formation of ZnO NPs. FTIR spectral analysis confirmed the presence of functional groups and metal oxygen groups. The biological activities of ZnO NPs were also investigated. The antibacterial effect of ZnO NPs was investigated against selected food pathogens (Salmonella Typhimurium, Listeria monocytogenes, and Enterococcus faecalis). The study results prove that the green synthesized ZnO NPs show enhanced antibacterial activity against S. Typhimurium when compared with other strains. A dose-dependent free radical scavenging activity was observed for ZnO NPs in both 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and fluorescence recovery after photobleaching (FRAP) assays. The ZnO NPs were evaluated for their photocatalytic activity during the degradation of methylene blue (MB) dye in aqueous solutions. The maximum removal of MB achieved was 64% with an initial ZnO NP concentration of 12 mg/mL under UV light. The present study revealed that the agricultural waste (saffron leaf) provides a simple and eco-friendly option to sustainably synthesize ZnO NPs for use as a photocatalyst. In addition, this is the first report on saffron leaf-mediated synthesis of ZnO NPs.  相似文献   
107.
High quality copper oxide thin films were prepared by nebulizer spray pyrolysis technique using different concentrations of copper precursor solution. Concentration‐dependent structural, morphological, optical, and electrical properties of the prepared films are discussed. X‐ray diffraction studies done for the samples confirmed that the deposited films are in Cu2O phase with polycrystalline cubic structure. Atomic force microscopy analysis revealed that all the films are composed of nano sheet shaped grains covering the substrate surface. Optical studies done on the samples showed band gap values 2.42, 2.31, and 2.02 eV for the solution concentration 0.01, 0.05, and 0.1 M, respectively. Photoluminescence spectral analysis showed the emission band at 620 nm confirming the formation of cuprous oxide. Electrical analysis of the films showed p‐type conductivity with a low resistivity 2.19 × 102 Ω.cm and high carrier concentration 16.76 × 10 15 cm−3 for the molar concentration 0.1 M. In this work, Cu2O/ZnO heterojunctions were also prepared, and solar cell properties were studied; they were found to show increased open circuit voltage and short circuit current for higher copper concentration.  相似文献   
108.
环境污染和能源紧缺已成为当今社会亟须解决的重大问题。高岭石基复合材料光催化处理技术因绿色环保、经济安全、无二次污染而备受关注。鉴于高岭石在光催化领域的研究现状,本文介绍了高岭石的层状硅酸盐结构特征及其在光催化领域的应用优势,综述了高岭石基光催化材料的主要类型、基本特征、合成方法、改性过程、光催化特点及其应用进展与优势,最后,提出了高岭石基复合材料在光催化领域应用的重点研究方向。以期获得制备工艺简单、光催化性能优异、原料易获取且无环境污染的高岭石基光催化复合材料,从根本上解决环境污染问题,缓解能源紧缺危机。  相似文献   
109.
Photodegradation of organic pollutants strongly depends on design of metal oxide semiconductor photocatalysts. Graphene, if composited with ZnO, can effectively enhance its photocatalytic performance for the eradication of pollutants from aqueous medium. Here in, ZnO-rGO is reported as highly active catalyst for degradation of methylene blue. A 200-mg/L solution of methylene blue dye was completely degraded within 1 h in comparison to 74% and 56% degradation over ZnO and rGO, respectively. The commonly used mechanisms of heterogeneous catalytic reactions, the Langmuir-Hinshelwood mechanism, and the Eley-Rideal mechanisms, were used to describe the reaction kinetics. The Langmuir-Hinshelwood mechanism was found as more favorable in this study. Apparent activation energy, Eap, true activation energy, ET, entropy, ΔS, and enthalpy, ΔH were calculated as 36.2 kJ/mol, 13.1 kJ/mol, 197.5 J/mol, and 23.1 kJ/mol, respectively.  相似文献   
110.
A facile hydrothermal method to synthesize flower-like Sn-doped ZnO (FLSn-ZnO) nanostructures is described. The obtained hierarchical architectures of FLSn-ZnO are found to be assembled with abundant regular-shaped nanosheets and nanoparticles. A possible formation mechanism is proposed on the base of a series of control experiments. The tests show that FLSn-ZnO architectures exhibit higher photocatalytic activity in the degrading Rhodamine B and tetracycline aqueous solution than pure ZnO under UV-light irradiation. And photocurrent response and photoluminescence of ZnO and FLSn-ZnO demonstrates that in photocatalytic performance, the latter is higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号